国产内射老熟女AAAA,精品视频在线观看在线,av日韩在线一区二区三区,日本a一区二区三区在线

撥號18861759551

你的位置:首頁 > 技術(shù)文章 > 單色光學(xué)像差

技術(shù)文章

單色光學(xué)像差

技術(shù)文章

Chromatic and Monochromatic Optical Aberrations

Designing optical systems is never an easy task; even perfectly designed systems contain optical aberrations. The trick is in understanding and correcting for these optical aberrations in order to create an optimal system. To do so, consider the types of aberrations present in optical systems.

 

Optical aberrations are deviations from a perfect, mathematical model. It is important to note that they are not caused by any physical, optical, or mechanical flaws. Rather, they can be caused by the lens shape itself, or placement of optical elements within a system, due to the wave nature of light. Optical systems are typically designed using first order or paraxial optics in order to calculate image size and location. Paraxial optics does not take into account aberrations; it treats light as a ray, and therefore omits the wave phenomena that cause aberrations.

 

Optical aberrations are named and characterized in several different ways. For simplicity, consider aberrations divided into two groups: chromatic aberrations (present when using more than one wavelength of light) and monochromatic aberrations (present with a single wavelength of light).

 

CHROMATIC ABERRATIONS

Chromatic aberrations are further classified into two types: transverse and longitudinal. Longitudinal can then be either primary or secondary longitudinal chromatic aberration.

 

Transverse chromatic aberration (TCA) occurs when the size of the image changes with wavelength. In other words, when white light is used, red, yellow, and blue wavelengths focus at separate points in a vertical plane (Figure 1). In optical terms, 656.3nm (red) is referred to as C light, 587.6nm (yellow) as d light, and 486.1nm (blue) as F light. These designations arise from their hydrogen emission lines for C & F lights and helium for d light.

 

Longitudinal chromatic aberration (LCA) occurs when different wavelengths focus at different points along the horizontal optical axis as a result of dispersion properties of the glass. The refractive index of a glass is wavelength dependent, so it has a slightly different effect on where each wavelength of light focuses, resulting in separate focal points for F, d, and C light along a horizontal plane (Figure 2).

Figure 1: Transverse Chromatic Aberration of a Single Positive Lens

Figure 2: Longitudinal Chromatic Aberration of a Single Positive Lens

Figure 3: Achromatic Doublet Lens Correcting for Primary Longitudinal Chromatic Aberration

Primary LCA correction is usually performed using an achromatic doublet lens, which is made of positive and negative lens elements of different refractive indices (Figure 3). This type of correction forces F and C light to focus at the same place, but has little effect on the location of the d light focus, which leaves residual chromatic aberration.

 

In order to correct this residual LCA, a more complex lens or lens system must be used to shift the focus of d light to be at the same axial location as the F and C focus. This type of correction is usually achieved by using an apochromatic lens, which is corrected such that three wavelengths focus at the same point, or a superachromatic lens, which is corrected such that four wavelengths focus at the same point. Figures 4a – 4d show a comparison in focus shift between the aforementioned types of lens systems.

Figure 4a: Focus Shift Illustration of No Aberration Correction with a Singlet Lens

Figure 4b: Focus Shift Illustration of Primary Longitudinal Chromatic Aberration Correction with an Achromatic Lens

Figure 4c: Focus Shift Illustration of Secondary Longitudinal Chromatic Aberration Correction with an Apochromatic Lens

Figure 4d: Focus Shift Illustration of Secondary Longitudinal Chromatic Aberration Correction with a Superachromatic Lens

 

MONOCHROMATIC ABERRATIONS

By far, monochromatic aberrations outnumber chromatic aberrations. Therefore, they are labeled with wavefront coefficients in addition to names. For example, spherical aberration has a wavefront coefficient of W040. This wavefront coefficient arises from the mathematical summation that gives the actual difference between the perfect and aberrated wavefronts:

In Equation 1, Wklm is the wavefront coefficient, H is the normalized image height, ρ is the location in the pupil, and θ is the angle between the two, which arrives due to the dot product of the two vectors. Once the wavefront coefficient is known, the order number can be determined by adding l and k. However, this will always create an even number. Since optical aberrations are often referred to as first, third, fifth order, etc, if k + l = 2, it is a first order aberration, if k + l = 4, it is a third order, etc. Generally, only first and third order aberrations are necessary for system analysis. Higher order aberrations exist, but are not commonly corrected in optical systems because of the complication this adds to the system. Usually, the complexity of correcting higher order aberrations is not worth the image quality improvement. Common third order monochromatic aberrations and their corresponding coefficients and equations are listed in table 1.

Aberration Name

Wavefront Coefficient

Equation

Tilt

W111

W111Hρcos(θ)

Defocus

W020

W020ρ2

Spherical

W040

W040ρ4

Coma

W131

W131Hρ3cos(θ)

Astigmatism

W222

W222H2ρ2cos2(θ)

Field Curvature

W220

W220H2ρ2

Disortion

W311

W311H3ρcos(θ)

Table 1: Common Third Order Optical Aberrations

 

Optical and imaging systems can contain multiple combinations of optical aberrations. These optical aberrations can be classified into either chromatic or monochromatic. Aberrations will always degrade image quality, and a very large portion of optical design is focused on recognizing and reducing these aberrations. The first step in correcting for aberrations is to understand the different types and how they affect system performance. With this knowledge, one can then design the best system possible. For in-depth information on identifying and correcting for chromatic and monochromatic aberrations, view Comparison of Optical Aberrations.

聯(lián)系我們

地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時在線客服,為您服務(wù)!

版權(quán)所有 © 2025 江陰韻翔光電技術(shù)有限公司 備案號:蘇ICP備16003332號-1 技術(shù)支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關(guān)注微信
99热这里只有精品亚洲| 欧美大鸡巴操穴日韩| 美女麻豆颜色光屁股眼子| 亚洲国产国产综合一区首页| 大香蕉中码手机在线视频| 操你的骚逼粉嫩AV| 老狼精品卡1卡2卡3网| 国产伦精品一区二区三区视频抖音| 妺妺坐在我腿上下面好湿| 色噜噜噜噜一区二区三区| 国产精品无码毛片久久久| 中文字幕乱码一区二区三区麻豆| 男人草女人的骚逼逼| 亚洲国产一区二区不卡在线资源| 青青视频在线人视频在线| 最新日本一区二区三区免费看| 2021国产一区二区岛国| 女人被男人操到高潮视频| 国产精品毛片一区视频播| 想被操在线啊啊啊啊| 日韩视频在线网页| 日韩欧美中文字幕国产精品| 国产尤物蜜臀AV| 92婷婷伊人久久精品一区二区| 久久久久有精品国产麻豆| 日韩欧美视频在线观看不卡| 日本熟妇一区二区三区四区| 日韩av午夜福利在线观看| 欧美一级淫片免费播放口| 欧美国产日韩a欧美在线| 欧美国产人妖另类色视频| 日本潘金莲三级bd高清| 操纯欲女生小穴视频| 男生插女生下面流出白色精液视频| 国产精品999午夜激情| 大鸡巴操小逼的视频| 伊人网在线免费视频| 操老骚逼三级黄视频| 黑人大鸡把操逼视频| 亚洲午夜福利视频在线| 最新AV中文字幕在线看|